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About me

Immune variation and parasite-induced immunodepression
(Université de Bourgogne, 2006-2009)

Evolutionary ecology of avian malaria transmission
(CEFE-MIVEGEC Montpellier, 2010-2012)

Ecoimmunology and bioinvasions
(CBGP Montpellier-Sénégal, 2014- )
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What is avian malaria?



Malaria parasites

Male-aria = bad air

Alphonse Laveran (1880) Ronald Ross (1898)
Discovers Plasmodium Transmission by mosquitoes




Avian malaria parasites (Haemosporidia)
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Avian malaria: molecular approach

e > 40 Plasmodium morphospecies
(290 cyt-b lineages)

e Plasmodium relictum (9 cyt-b lineages)
® SGS1 most common P. relictum lineage in

Europe (46 different hosts, 14 families of
Passeriformes)
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PERMANENT GENETIC RESOURCES ARTICLE
MalAvi: a public database of malaria parasites and related
haemosporidians in avian hosts based on mitochondrial
cytochrome b lineages

Avian malaria/haemosporidia

Mol Ecol Res 2009
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Martisen et al. 2008 Mol Phylogen Evol

3-genome phylogeny with 4 markers (2 mit, 1 apicompl, 1 nucl)
(outgroup = Leucocytozoon) / major clades associated with vector
shifts + other ‘traditional’ characteristics

mammalian
| Hepatocystis

primate hosts
‘ mammalian Plasmodium
gl 2P€ hosts
rodent hosts

avian/squamate
Plasmodium

chiropteran Polychromophilus

—< avian Parahaemoproteus

——==sss@lllll avian Haemoproteus

——«

i avian Leucocytozoon

Outlaw & Ricklefs 2011 PNAS
Outgroup-free phylogenetic recontruction using relaxed molecular clock
with uncorrelated rates

e Huge diversity of avian haemosporidia,
influenced by vector, host, ecology...

e Promising model to investigate host-parasite
interactions in the wild, coevolutionary
processes and parasite-mediated effects on
host life histories



n Malaria: the life cycle
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h” Malaria: the life cycle of Plasmodium relictum
ad

Valkiunas 2005

Figure 11 Diagrammatic representation of the life cycle of bird malaria parasites (Plasmodium
relictum as an example):

Upper part, in vector; lower part, in bird: L, Il — primary exoerythrocytic merogony; III — erythro-
cytic merogony: IV — secondary exoerythrocytic merogony; / — sporozoite in reticuloendothelial
cell; 2, 3 — cryptozoites; 4 — merozoite in macrophage; 5, 6 — metacryptozoites; 7 — merozoites in
erythrocytes; § — gametocytes; 9 — merozoite in erythrocyte; /0, 11 — erythrocytic meronts; 12 —
merozoite in endothelial cell of capillaries; 13, /4 — phanerozoites; /5 — merozoites in erythrocytes;
16 — gametocytes; 17 — macrogamete; /§ — exflagellation of microgametes; /9 — fertilization of
macrogamete; 20 — ookinete penetrating the peritrophic membrane; 2/ - young oocyst; 22, 23 —
sporogony; 24 — sporozoites in the salivary glands of vector.



A semi-natural system in the lab

Culex pipiens p% 4
(field & lab)

In the field (Plasmodium sp.)

. ® 30-75 % in Passeriformes
canaries ® 5-10 % in Culex mosquitoes

natural mosquito-Plasmodium association ]




Epidemiology of vector-borne pathogens
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Infectious diseases: to set efficient public health/veterinary policies, need a
better understanding of the factors affecting their spread

Models and predictions of epidemics
>> Accurate estimation of the parameters



Epidemiology of vector-borne pathogens

>> Factors influencing malaria transmission

Quantitative effects

Qualitative effects

density of vectors vectorial capacity mosquito susceptibility

/ mosquito behaviour mosquito infectiousness
(biting rate)
m VC / |
R —_ length sporogonic cycle
0=

a abce gn "
r VC = /
v g
duration of infection
in the host \

mosquito mortality
(1/g longevity)

R, expected number of secondary infections produced by a single infection in a susceptible population



Epidemiology of vector-borne pathogens

Two ways of manipulating (increasing transmisison, R,) host

- host-to-vector transmission
- vector-to-host transmission

vector

AVIAN MALARIA

- Alternative system to study the ecology and epidemiology of malaria parasites
- Important role for the understanding of human malaria epidemiology

e Can malaria manipulate vector behaviour?

e Can malaria react plastically to vector stimuli (biting)?
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Can malaria manipulate vector behaviour?



‘5! l.- Parasitic manipulation and vector-borne diseases

e Contact rate between hosts and vectors is a fundamental determinant of
parasite transmission and epidemiology

e Parasitic manipulation in vectors: alterations of phenotypic traits increasing
the rate of contact and the success of vector-to-host transmission

e Parasites could also manipulate their vertebrate hosts to render them more
attractive to vectors (selective advantage for parasites)



Parasitic manipulation and vector-borne diseases

e Non-random biting if mosquitoes feed disproportionately more often
on infected hosts

e Qualitatively and quantitatively affects the dynamics of vector-borne parasites



Do malaria infection increase bird attractiveness?
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[ Biting behaviour of uninfected mosquitoes? ]




» W:ﬁ P. relictum lineage SGS1
Culex pipiens 9 2. < ., - isolated from house sparrows

(field & lab)
\\ ff# 30-75 % infection

Plasmodium sp. in the field

>> opportunity for a choice / the

canaries . . .
evolution of manipulation

natural mosquito-Plasmodium association ]
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Mosquito behaviour: uninfected vs. Plasmodium-infected birds ... but when??
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e Pairs tested 3 times - before infection: initial attractiveness
- acute infection (10 dpi): high parasitemia
- chronic infection (24 dpi): low parasitemia, "natural" situation

e Presence of gametocytes in both acute and chronic infections

parasitemia



~ /1. Methods - Experimental set-up
.-._?\_.’-q.}x

80 cm

o191

e 70 uninfected mosquitoes released, allowed to feed for 2 hours
(#olfactometry)

32cm

e Choice inferred using a molecular method by genotyping the ingested blood

e Pairs of birds with dissimilar microsat profile, matched for sex and condition
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Results - Infection and mosquito behaviour

before
infection

acute
infection

chronic
infection

e Before: no overall preference (49%,
p=0.96) but substantial variation (up to
95% of attracted mosquitoes)

e Acute infection: no detectable change
(54%, p=0.21)

e Chronic infection: more mosquitoes
have fed on the infected hosts (60%,
p<0.0001)

e Difference acute vs. chronic?



Results - Plasmodium effects on bird condition
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e Acute infection: severe anemia, a consequence of high parasitemia
e Chronic infection: lower parasitemia, haematocrit recovers

e RBC = resource for egg production - Anaemia should affect mosquito
feeding behaviour
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Results - Infection, haematocrit and mosquito behaviour

before

T T T T T
-03 -02 -0+ 0.0 0.1 0.2 0.3

differential haematocrit
(infected - uninfected)

e A haematocrit (AH) (x?,=3.9, p=0.04)
- positively related to choice
- constant across timepoints

* Global infection (x2,=17.8, p<0.0001)
- contrast 0-10 (x*,=1.5, p=0.22)
- contrast 24-(0+10) (x*,=15.2, p<0.0001)

e Shift in AH towards lower values in
acute infection (anaemic infected birds)

e Comparison before vs. acute only
- AH (¢2,=8.1, p=0.004)
- infection (x*,=4.4, p=0.035)



Manipulation of host attractiveness - Conclusions

[ Plasmodium relictum increases the attractiveness of infected hosts ]

e Strong effect in chronic infection: v
- despite a preference for birds with high haematocrit, |
mosquitoes choose to feed on anaemic infected birds 4 N

* No clear detectable effect in acute infection:
- high anaemia may have hidden any parasite-induced manipulation
- nevertheless suggests a parasite effect: infected hosts found as attractive as
uninfected birds, whereas should have repeled mosquitoes
- attractiveness prevented because of high costs of infection in mosquitoes?

e Assessment of bird condition? / Factors driving mosquito behaviour?
- haematocrit partly involved, but also other factors (CO2, odours, ...)
- capture and analysis by GC-MS of bird body odours (inter-individual variation,
effects of infection, ...)



n Malaria: the life cycle
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Alteration of the biting behaviour (quantitative manipulation)

Change in saliva composition (anti-haemostatic
molecules, apyrase) and obstruction of
alimentary tract associated with infection

* Prolonged feeding time / persistence
e Difficulty to obtain full blood meal > e, 8
promoting host seeking behaviour Plasmodium & mosquito
e Multi-host feeding (Koella et al. 1998 PRSLB)

>> Alteration of host-choice behaviour?

Leishmania & sand fly
(Roger & Bates 2007 PLoS Pathog)

Trypanosoma & tsetse fly
(Van den Abeele et al. 2010 PLoS Pathog)



Behaviour of infected mosquitoes (qualititative manipulation)

Bursting cyst \

QOocyst

Mosquito
midgut

Zygote ,"6

X

Macrogamete
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» Choice experiment
* mosquitoes uninfected vs infected by sporozoites
* birds uninfected vs chronic infection (55 dpi)
e same parasite in birds and vectors

« 10 different pairs of birds

» 80 mosquitoes (40/40) allowed to feed for 2 hrs



Feeding behaviour of infected mosquitoes
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* Choice toward infected hosts (~60%)

e No overall difference in feeding preference between infected and uninfected mosquitoes
e \Within a pair, infected and non-infected made similar choice (independant of the relative
attractivness of the infected bird)

e The malaria parasite within the bird is driving the choice of infected mosquitoes
e Same parasites in birds and vectors / What if different parasite stocks/lineages?



Manipulation of vector behaviour - Perspectives

What makes infected birds more attractive?

Malaria: Exageration of a molecule targeted
by mosquitoes for host seeking behaviour
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Can malaria react plastically to mosquito biting?



Vector-transmitted parasites

host

parasite

vector

Better understanding of the specific relationships between Plasmodium and its vector
to control malaria epidemiology

Parasite density is key in transmission
Parasite density varies

- in time and space at the population level
- during the course of infection at the individual level



Relapses: a plastic parasite strategy?
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Relapses: a plastic parasite strategy?

HOST PHYSIOLOGY

(hormones, stress, immunity)

ENVIRONMENT

(season, photoperiod)

VECTORS

(species, abundance)
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Relapses: what does theory tell us?
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[ Plastic transmission strategies can evolve in response to vector density fluctuations ]




Relapses: evidence for a role of vectors?
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vectors:
- pulse vs. non-pulse vectors (Allan & Mahrt 1989)
- long patency vs. frequent relapse in P. vivax (White 2011)

» Relapse triggered by the biting of uninfected vectors:
- match between disease prevalence and vector abundance
(longitudinal cohort studies; Paul et al. 2004; Hulden et al. 2008)
- enhanced asexual replication and gametocytogenesis as a
consequence of mosquito biting
(rodent malaria; Billingsley et al. 2005, but not in Shutler et al. 2005)

MEDIAN TIME TO FIRST RELAPSE [DAYS)

100

o

LATITUDE



Relapses: an experimental test

Can mosquito bites affect parasite in-host replication and Plasmodium transmission?
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Vector bites, parasite dynamics & transmission
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Higher parasitaemia after bites

Higher infection rate when birds
had been previously exposed

Higher oocyst burden when birds
had been previously exposed



e Birds never cleared Plasmodium infection (no true relapse in this system)

e Change in parasite replication as a response to mosquito bites during the
chronic stage of infection

e Mirrored in transmission to mosquitoes (higher infection rate/oocyst burden)

e Control (unexposed) birds infective for mosquitoes at 307 dpi
> Difference in transmission success between control and exposed birds?

1.0

06 08

P=0.016

0.4

e Bites of uninfected vectors can have a strong impact on malaria
epidemiology

0.2

PROPORTICN OF INFECTED MOSQUITOES

0.0

control exposed

e Relapse: interaction between different synergetic stimuli MOSQUITO EXPOSURE
(vector, host physiology, environment)

e Avian malaria system offers interesting perspectives to investigate the
underlying mechanisms of relapses (stimuli perceived parasites, specificity,
parasite strains...)



Avian malaria: experimental and field work on various aspects of host-parasite interactions

Besides its divergence with human malaria, still gives valuable inputs for understanding the
ecology, evolution and epidemiology of malaria

Still a lot to do using this experimental system

For more details

- Malaria infection increases bird attractiveness to uninfected mosquitoes. Ecology Letters, 16: 323-329
- Both infected and uninfected mosquitoes are attracted toward malaria infected birds. Malaria Journal, 12: 79
- Evolution of plastic transmission strategies in avian malaria. PLoS Pathogens, 10: e1004308

- Alterations of mosquito feeding behaviour by the avian malaria Plasmodium relictum (to come)
- From bird to mosquito: within-host dynamics and transmission of avian malaria (R. Pingeault et al., to come)



